UNIVERSITI TEKNOLOGI MARA (UiTM) MALAYSIA

EMOTIONAL USER EXPERIENCE IN WEB DESIGN: THE KANSEI ENGINEERING APPROACH

ANITAWATI MOHD LOKMAN

PhD

December 2009
EMOTIONAL USER EXPERIENCE IN WEB DESIGN: THE KANSEI ENGINEERING APPROACH

ANITAWATI MOHD LOKMAN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Computer and Mathematical Sciences

December 2009
ABSTRACT

The use of the Internet has become an essential part of our everyday lives. People surf the website with various purpose to accomplish their personal goals. Inline with the thriving growth in the use of website, research in website design has expanded the focus from functionality and usability to the full range of human experience. In recent years, Human Computer Interaction (HCI) issues related to web applications have shifted its focus to address emotional aspect of website design. This is mainly due to the evolution of website functions from conveying information to the extent of providing persuasive engagement with visitors through the lively process of perception, judgment and action. Over the Internet, visitor’s perception of websites significantly affects their browsing behaviours and purchase decisions. With its nature of unlimited availability, online businesses are exposed to vast competition. Hence, an online business need to offer a website that could capture visitor’s attention at first sight and persuade them to stay longer on the website, to win over competitor. Supported by previous literature involving studies on user experience, this research argue that to motivate stickiness to website, the website must be able to cultivate emotional engagement and elicit positive user experience. To enable the development of such website, the knowledge of how design elements influence emotion must be pursued so that we could engineer the emotion into a website design. This research was performed to systematically engineer the aspect of emotional user experience in Website UID. The research formulated its research framework based on Kansei Engineering (K.E.) methodology. Using 35 valid website specimens, 40 emotional keywords, and 120 evaluation subjects, the research performed experiments to assess users’ emotional responses to Website UID. Multivariate analyses were performed to the average evaluation result obtained from subjects to determine the concept of emotion in Website UID and investigate the associated design elements to be used as a guide in designing Kansei Website, a website that embeds target emotion in its design. Based on the results, the research proposed Kansei Web Design Guideline©, a guideline to the design of Kansei Website. A confirmatory study was performed to provide justification to the guideline. Five prototypes were developed according to the proposed guideline, to be used as specimen in the confirmatory study. A comparative analysis was performed to analyse differences in the structure of emotion formed by the assessment of emotion before and after the implementation of the guideline. The result has shown a clearer formation of the structure of emotion in the newly developed prototypes, and thus provided some hypothetical credence that it is possible to design website that embeds target emotion with the use of the guideline. Based on its results, this research developed Kansei Web Design Guideline©, Kansei Website Taxonomy, Method to Engineer Kansei Website, and Method of Emotion Detection. Additionally, the research has also developed Kansei Design Model and Periodic Table of Kansei Web Design Elements©. Although all of these outcomes were based on experiments that were performed with some limitations and constraints, they lend some novel foundations in the engineering of emotion in Website UID. Further testing of the experiments in a larger and more diverse population and variable could be performed to support the internal validity of the research claims.
ACKNOWLEDGEMENTS

Alhamdulillah, praise be to Allah, the Most Gracious, the Most Merciful.

Many people have contributed their ideas, time, and energy to assist me in the pursuit of this research. I am grateful to my two supervisors: Associate Professor Dr Nor Laila Md Noor and Professor Dr. Mitsuo Nagamachi who gave me the opportunity to work on this topic, convinced me to incorporate an experimental approach, and taught me a great deal about writing research papers. Associate Professor Dr. Nor Laila Md Noor assured that the project satisfies the applied needs of the IT discipline, and Professor Dr. Mitsuo Nagamachi was my resource to the Kansei Engineering methodology used as a foundation to this research.

I thank all members of the HCI SIG group who supported me by discussing ideas, commenting on drafts, and providing good company. The research project was partially supported by the Ministry of Science, Technology and Innovation Malaysia under the ScienceFund grant scheme.

I wish to thank my family and friends for their support and company during this exciting and challenging period of my life. I am especially grateful to my husband, Ismail Amat, who has been supporting me unconditionally in good and bad times throughout my research endeavours. My deepest love to all my children, Aqil, Eidlan, Zulaikha, Umaeer, Uqashah and Eidrihana, for their loves and sacrifices in accommodating my selfish venture.

I would like to dedicate this work to Anis Umairah, my late daughter, whom her super-brave courage and will she thought me during her short life has been my inspiration thereafter.
TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENT
TABLE OF CONTENTS
LIST OF TABLE
LIST OF FIGURES

CHAPTER 1: INTRODUCTION

1.1 Overview 1
1.2 Problem Statement 2
1.3 Definition of Terms 5
1.4 Research Objectives 6
1.5 Research Questions 8
1.6 Theoretical Research Framework 10
1.7 Research Scope and Limitations 12
1.8 Research Contribution 14
 1.8.1 Methodological Contributions 14
 1.8.2 Theoretical Contributions 15
 1.8.3 Empirical Contribution 15
 1.8.4 Practical Contribution 17
1.9 Structure of the Thesis 18

CHAPTER 2: LITERATURE REVIEW

2.1 Overview 20
2.2 The Design Science 21
CHAPTER 5: EXPLORATORY STUDY

5.1 Overview 97
5.2 Pilot Study 97
 5.2.1 Analysis and Conclusion 98
5.3 Emotion Measurement 101
 5.3.1 The Emotion Measurement Procedure 102
 5.3.2 The Exploratory Data Audit 103
5.4 Exploratory Analysis 105
 5.4.1 Overcoming the Problem of Specimen Size and Multicollinearity 107
 5.4.2 Conceptualising Emotion in Website Design 110
 5.4.2.1 Correlations of Emotion 110
5.4.2.2 The Structure of Emotion 112
5.4.2.3 Concluding the Components 124
5.4.2.4 The Concept of Emotion 125
5.4.3 The Requirement Analysis 128
5.4.3.1 Partial Least Squares (PLS) Analysis 129
5.4.3.2 Clustering the Website Emotion 135
5.5 Proposing Kansei Web Design Guideline© 138
5.6 Summary 140

CHAPTER 6: CONFIRMATORY STUDY

6.1 Overview 142
6.2 The Validation Method 142
6.3 The Confirmatory Dataset 144
 6.3.1 Prototype Development 145
 6.3.2 The Testing (Emotion Measurement) 147
 6.3.3 The Data Audit 148
6.4 The Exploratory Dataset 148
6.5 Comparative Analysis of the Exploratory and Confirmatory Datasets (Confirmatory Analysis) 149
 6.5.1 The Exploratory PCA 149
 6.5.2 The Confirmatory PCA 150
 6.5.3 The Comparison PCA 152
6.6 Finalizing the Kansei Web Design Guideline 154
 6.6.1 The Periodic Table of Kansei Web Design Elements© 155
6.7 Taxonomy Development 157
6.8 Method Generation 158
6.9 Summary 160
CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Overview
7.2 Discussions
7.3 Implications of Research
7.4 Summary of Findings
7.5 Research Challenges
7.6 Research Limitations
7.7 Future Work

BIBLIOGRAPHY

APPENDICES

Appendix 1: The List of Initial Specimen
Appendix 2: Sample of Design Elements & Values
Appendix 3: Sample of the Matrix of Specimen vs. Design Elements
Appendix 4: Sample of Pareto Results for Design Elements in Initial Specimens
Appendix 5: Sample of the 35 Websites Specimen Used in Exploratory Study
Appendix 6: Sample of PLS Range
Appendix 7: Sample of Dominant Element
Appendix 8: Sample of Range for Design Elements & Emotion
Appendix 9: Sample of PLS Score for Specimen & Emotion
Appendix 10: The Kansei Web design Guideline©
Appendix 11: Sample of the Kansei Website Taxonomy
Appendix 12: List of the Research Publications
LIST OF TABLE

Table 1.1: Terminologies. 5
Table 1.3: The Adoption Of K.E. in Website UID. 11
Table 2.1: Users and Design. (As In Preece Et Al., 2002). 27
Table 4.1: Exploratory Research Instrument. 76
Table 4.2: Control Condition in Identification of Initial Specimen. 78
Table 4.3: Font Family Reference. 80
Table 4.4: Font Size Reference. 81
Table 4.5: Page Orientation Reference. 82
Table 4.6: Colour Basics. 82
Table 4.7: Design Elements in The Initial Specimens 84
Table 4.8: Example of Design Elements and Values. 85
Table 4.9: Sample of The Matrix of Specimen vs. Design Element. 86
Table 4.10: The 35 Valid Specimen. 88
Table 4.11: The Emotional Keywords. 91
Table 4.12: Confirmatory Research Instruments. 93
Table 5.1: Sample of the Average Evaluation Data from Pilot Study. 98
Table 5.2: Instruments and Equipments for the Emotion Measurement. 101
Table 5.3: Sample of Raw Data. 103
Table 5.4 : Computed Calculation on Acceptance Sampling. 104
Table 5.5: Computed Calculation on Generated Plans. 104
Table 5.6: Data Audit Results. 105
Table 5.7: Sample of the Average Data. 106
Table 5.8: Analysis Flow. 107
Table 5.9: Sample of the Simple Correlation Table. 111
Table 5.10: Sample of the Zero Correlation Table. 112
Table 5.11: Differences in the Structure of Emotion with Population Size. 123
Table 5.12: Differences in the Structure of Emotion with Educational Background. 123
Table 5.13: Differences in the Structure of Emotion with Gender Background. 124
Table 5.14: Factor Contribution Table. 125
Table 5.15: Factor Loadings for Emotions. 127
Table 5.16: Sample of the Converted Dummy Variables. 129
Table 5.17: Percent of Variation Explained for Adorable. 130
Table 5.18: Sample of The PLS Coefficient Score. 131
Table 5.19: A Sample of the Influence of Design Elements to Emotion. 133
Table 5.20: Website and Emotion. 134
Table 5.21: Sample from the Proposed Kansei Web Design Guideline©. 139
Table 6.1: Sample of the Selected Emotion from The Guideline. 145
Table 6.2: Confirmatory Website Specimen. 146
Table 6.3: The Kansei Website Taxonomy – 1st Level. 157
Table 6.4: The Kansei Website Taxonomy - 2nd Level (Mystic). 158
Table 7.1: Summary of Findings. 168
LIST OF FIGURE

Figure 2.1:	Russel Circumplex Model of Affect (1980).	25
Figure 2.2:	Classification of Web Design Elements.	29
Figure 2.3:	Components of User Experience Model. (Mahlke & Thüring, 2007).	33
Figure 2.4:	The House of QFD (Akao, 1990).	41
Figure 2.5:	Product Emotion Evaluation Tool (Premo) (Destmet, 2003).	42
Figure 3.1:	Product Evolution by Consumer Maturity over Time.	52
Figure 3.2:	Principle of K.E.	56
Figure 3.3:	Concept of K.E. in Website Design.	66
Figure 4.1:	The Research Framework.	69
Figure 4.2:	Kansei Design Model.	72
Figure 4.3:	Basic Webpage Layout.	79
Figure 4.4:	Rules to Identify Valid Specimen.	87
Figure 4.5:	Rules in Screening Specimens.	87
Figure 4.6:	Sample of Checklist for the Exploratory Study.	92
Figure 4.7:	Sample of Checklist for the Confirmatory Study.	95
Figure 5.1:	PC Loadings for Pilot Study.	99
Figure 5.2:	PC Vector for Pilot Study.	100
Figure 5.3:	Layout Setting.	101
Figure 5.4:	The Emotion Measurement Procedure.	103
Figure 5.5:	The Structure Of PLS (Ishihara, 2007).	110
Figure 5.6:	PCA Contribution Table.	113
Figure 5.7:	PC Loading for PC1 & PC2.	115
Figure 5.8:	PC Score for PC1 & PC2.	116
Figure 5.9:	PC Vector for PC1 & PC2.	117
Figure 5.10:	PC Loading for PC1 & PC3.	118
Figure 5.11:	PC Score for PC1 & PC3.	119
Figure 5.12:	PC Vector for PC1 & PC3.	120
Figure 5.13:	PC Loading for PC2 & PC3.	121
Figure 5.14:	PC Score for PC2 & PC3.	122